skip to main content


Search for: All records

Creators/Authors contains: "Dalgic, Ozden O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hepatitis C virus (HCV) is 15 times more prevalent among persons in Spain’s prisons than in the community. Recently, Spain initiated a pilot program, JAILFREE-C, to treat HCV in prisons using direct-acting antivirals (DAAs). Our aim was to identify a cost-effective strategy to scale-up HCV treatment in all prisons. Using a validated agent-based model, we simulated the HCV landscape in Spain’s prisons considering disease transmission, screening, treatment, and prison-community dynamics. Costs and disease outcomes under status quo were compared with strategies to scale-up treatment in prisons considering prioritization (HCV fibrosis stage vs. HCV prevalence of prisons), treatment capacity (2,000/year vs. unlimited) and treatment initiation based on sentence lengths (>6 months vs. any). Scaling-up treatment by treating all incarcerated persons irrespective of their sentence length provided maximum health benefits–preventing 10,200 new cases of HCV, and 8,300 HCV-related deaths between 2019–2050; 90% deaths prevented would have occurred in the community. Compared with status quo, this strategy increased quality-adjusted life year (QALYs) by 69,700 and costs by €670 million, yielding an incremental cost-effectiveness ratio of €9,600/QALY. Scaling-up HCV treatment with DAAs for the entire Spanish prison population, irrespective of sentence length, is cost-effective and would reduce HCV burden.

     
    more » « less
  2. Abstract Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages. 
    more » « less
  3. Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub ( https://covid19forecasthub.org/ ) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks. 
    more » « less